Altered connexin 43 expression underlies age-dependent decrease of regulatory T cell suppressor function in nonobese diabetic mice.

نویسندگان

  • Michal Kuczma
  • Cong-Yi Wang
  • Leszek Ignatowicz
  • Robert Gourdie
  • Piotr Kraj
چکیده

Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell-mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (T(regs)) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate T(regs) in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory functions can be corrected, even in T cells isolated from aged, diabetic mice, by a synergistic activity of retinoic acid, TGF-β, and IL-2, which enhance connexin 43 and Foxp3 expression in T(regs) and restore the ability of conventional CD4(+) T cells to upregulate Foxp3 and generate peripherally derived T(regs). Moreover, we demonstrate that suppression mediated by T(regs) from diabetic mice is enhanced by a novel reagent, which facilitates gap junction aggregation. In summary, our report identifies gap junction-mediated intercellular communication as an important component of the T(reg) suppression mechanism compromised in NOD mice and suggests how T(reg) mediated immune regulation can be improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Suppressor Function of Regulatory T Cells in Type 1 Diabetes

Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...

متن کامل

Single cell analysis shows decreasing FoxP3 and TGFβ1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes

Natural CD4(+)CD25(+) regulatory T (CD4(+)CD25(+) T reg) cells play a key role in the immunoregulation of autoimmunity. However, little is known about the interactions between CD4(+)CD25(+) T reg cells and autoreactive T cells. This is due, in part, to the difficulty of using cell surface markers to identify CD4(+)CD25(+) T reg cells accurately. Using a novel real-time PCR assay, mRNA copy numb...

متن کامل

Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development.

In the nonobese diabetic (NOD) mouse, pathogenic and suppressor CD4(+) T cells can be distinguished by the constitutive expression of CD25. In this study, we demonstrate that the progression of autoimmune diabetes in NOD mice reflects modifications in both T cell subsets. CD4(+)CD25(+) suppressor T cells from 8-, but not 16-wk-old NOD mice delayed the onset of diabetes transferred by 16-wk-old ...

متن کامل

T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice

The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for acce...

متن کامل

Reduced connexin 43 expression and its effect on the development of vascular lesions in retinas of diabetic mice.

PURPOSE. To examine whether diabetes-induced connexin 43 downregulation promotes retinal vascular lesions characteristic of diabetic retinopathy (DR). METHODS. Two animal models, streptozotocin-induced diabetic mice and Cx43 heterozygous knockout (Cx43(+/-)) mice, were studied to directly assess whether diabetes reduces the expression of retinal Cx43, which, in turn, contributes to retinal vasc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 194 11  شماره 

صفحات  -

تاریخ انتشار 2015